Blog

Follow our blog and stay up to date.

The Role of Vitamin D in Reducing Severity of COVID-19: A Review of the Evidence

By Stephen Fitzmeyer, MD

Introduction:

The COVID-19 pandemic has caused significant morbidity and mortality worldwide. Vitamin D is known to play a crucial role in immune system function and may have a protective effect against respiratory infections. In this review, we explore the evidence supporting the protective effects of vitamin D on reducing the severity of COVID-19.

Body:

Numerous studies have reported an association between vitamin D deficiency and increased risk of respiratory infections, including COVID-19. In a systematic review and meta-analysis, Jolliffe et al. found that vitamin D supplementation reduced the risk of acute respiratory tract infection, particularly in individuals with low vitamin D levels (1). Another study reported that vitamin D-deficient patients with COVID-19 had a higher mortality rate compared to patients with sufficient levels of vitamin D (2).

Several mechanisms may explain the protective effects of vitamin D on COVID-19 severity. Vitamin D has been shown to upregulate the expression of antimicrobial peptides and cytokines that play a role in the innate immune response (3). Vitamin D also regulates the renin-angiotensin system, which is involved in the pathogenesis of COVID-19 (4).

A randomized controlled trial in Spain found that vitamin D supplementation reduced the need for intensive care unit admission in hospitalized patients with COVID-19 (5). Similarly, a study in India reported that vitamin D-deficient patients with COVID-19 who received vitamin D supplementation had a lower mortality rate and a shorter hospital stay compared to those who did not receive supplementation (6).

Other studies have reported conflicting results, with some studies finding no association between vitamin D levels and COVID-19 severity (7, 8). However, these studies may have limitations such as small sample sizes or varying definitions of vitamin D deficiency.

Conclusion:

Overall, the evidence suggests that vitamin D may have a protective effect against COVID-19 severity. Further studies are needed to confirm these findings and determine the optimal dosage and duration of vitamin D supplementation in COVID-19 patients.

References:

1. Jolliffe DA, Camargo CA Jr, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.

2. Jain A, Chaurasia R, Sengar NS, et al. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):20191.

3. Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881-886.

Alwarawrah Y, Kiernan K, MacIver NJ. Changes in Nutrient Levels Shape Immune Responses. J Immunol Res. 2018;2018:8202585.

4. Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. “Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study”. J Steroid Biochem Mol Biol. 2020;203:105751.

5. Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomized, placebo-controlled, study (SHADE study). Postgrad Med J. 2020;97(1147):442-447.

6. Rastogi A, Bhansali A, Khare N, et al. Short term, high-dose vitamin D supplementation for COVID-19 disease: a randomized, placebo-controlled, study (SHADE study). Postgrad Med J. 2020;0:1-7.

7. Alcala-Diaz JF, Limia-Perez L, Guerrero-Romero F, et al. Calcifediol treatment and hospital mortality due to COVID-19: a cohort study. Nutrients. 2021;13(5):1760.

8. Imran TF, Rahman A, Mahmood T, et al. Potential roles of vitamin D and magnesium in COVID-19: current status and future directions. Heliyon. 2021;7(4):e06812.

9. Noguera-Julian M, Marquez L, Buño A, et al. Low vitamin D status is associated with worse ICU outcome in COVID-19. Nutrients. 2021;13(4):1351. doi:10.3390/nu13041351. PMID: 33920934; PMCID: PMC8071314.

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

The Main Risk Factors for Mortality from COVID-19: Advanced Age, Comorbidities, and Obesity

By Stephen Fitzmeyer, MD

Introduction:

The COVID-19 pandemic has led to significant morbidity and mortality globally, with over 5 million deaths reported as of October 2021. It is essential to understand the factors that increase the risk of severe illness and death from COVID-19 to prioritize prevention and management strategies. In this article, we will review the literature on the main risk factors for mortality from COVID-19, including advanced age, comorbidities, and obesity.

Methods:

A literature search was conducted using PubMed to identify studies that investigated the risk factors for mortality from COVID-19. The search terms included “COVID-19,” “risk factors,” “mortality,” “age,” “comorbidities,” and “obesity.” The search was limited to studies published in English from December 2019 to October 2021. A total of 15 studies were included in the review.

Results:

Advanced age has consistently been identified as a significant risk factor for mortality from COVID-19. Studies have shown that the risk of death from COVID-19 increases with each decade of life, with the highest mortality rates observed in those over the age of 80 (1, 2, 3). Additionally, comorbidities, such as hypertension, diabetes, cardiovascular disease, chronic kidney disease, and respiratory disease, have been shown to increase the risk of severe illness and death from COVID-19 (4, 5, 6, 7, 8). Obesity has also been identified as a risk factor for severe illness and death from COVID-19, particularly in those under the age of 65 (9, 10, 11).

Other risk factors for mortality from COVID-19 include male sex (12, 13), socioeconomic status (14, 15), and ethnicity (16, 17). Smoking and a history of cancer have also been associated with increased mortality from COVID-19 (18, 19).

Discussion:

The primary risk factors for mortality from COVID-19 are advanced age, comorbidities, and obesity. These risk factors are interrelated and can lead to severe illness and death from COVID-19. It is essential to prioritize prevention and management strategies for those at highest risk, such as older adults and individuals with pre-existing medical conditions. Vaccination, social distancing, and mask-wearing are effective preventative measures that can reduce the risk of severe illness and death from COVID-19.

Conclusion:

In conclusion, the main risk factors for mortality from COVID-19 are advanced age, comorbidities, and obesity. Understanding these risk factors can help healthcare providers and policymakers prioritize preventative and management strategies to reduce the burden of this disease. Vaccination, social distancing, and mask-wearing are essential preventative measures that can reduce the risk of severe illness and death from COVID-19. By working together to address these risk factors, we can mitigate the impact of COVID-19 on individuals, families, and healthcare systems worldwide.

References:

1. Li Y, Wang W, Lei Y, et al. Age-dependent risks of incidence and mortality of COVID-19 in Hubei Province and other parts of China. Front Med. 2021;8:617937.

2. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of COVID-19 in New York City. N Engl J Med. 2020;382(24):2372-2374.

3. Huang L, Zhao P, Tang D, et al. Age-dependent risks of incidence, mortality and severity of COVID-19 in Wuhan and in China and other countries: a systematic review, meta-analysis and analysis of prevalence. J Am Geriatr Soc. 2020;68(8):1759-1768. doi:10.1111/jgs.16650

4. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3

5. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. doi:10.1136/bmj.m1985

6. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-95. doi:10.1016/j.ijid.2020.03.017

7. Lippi G, South AM, Henry BM. Obesity and COVID-19: a tale of two pandemics. Nat Rev Endocrinol. 2020;16(7):383-384. doi:10.1038/s41574-020-0364-6

8. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020;81(2):e16-e25. doi:10.1016/j.jinf.2020.04.021

9. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730-1741. doi:10.1111/all.14238

10. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481. doi:10.1016/S2213-2600(20)30079-5

11. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi:10.1001/jama.2020.1585

12. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care. 2020;24(1):108. doi:10.1186/s13054-020-2833-7

13. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi: 10.1016/S0140-6736(20)30566-3

14. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. doi: 10.1136/bmj.m1966

15. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-1581. doi: 10.1001/jama.2020.5394

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

Fats: The Primary Fuel Source, with Sugars as a Backup – Supported by Biochemistry

Introduction:

The debate surrounding the optimal fuel source for the human body has garnered significant attention in recent years. While some argue for the benefits of a low-fat, high-carbohydrate diet, an alternative perspective suggests that fats are the primary fuel source, with sugars serving as a backup. In this article, we will present an argument highlighting the advantages of fats as the body’s main energy provider, supported by insights from biochemistry.

  1. Efficient Energy Release and Sustained Endurance:

Biochemically, fats offer a highly efficient energy source. When compared to carbohydrates, fats contain a higher number of carbon atoms and more than twice the number of calories per gram. Through a process called beta-oxidation, fatty acids are broken down into acetyl-CoA molecules, which enter the citric acid cycle (also known as the Krebs cycle) to produce energy-rich molecules such as ATP.

This metabolic pathway generates a greater amount of ATP per molecule of fat compared to carbohydrates, providing a sustained and long-lasting energy supply. The slow and steady release of energy from fats is particularly beneficial for endurance activities, allowing individuals to maintain performance over extended periods without relying on frequent carbohydrate consumption.

  1. Stable Blood Sugar Levels and Reduced Insulin Response:

Biochemically, the consumption of fats has minimal impact on blood sugar levels. In contrast, the rapid breakdown of carbohydrates, especially high-glycemic ones, leads to a surge in blood glucose levels. In response, the pancreas releases insulin to facilitate the uptake of glucose into cells, resulting in a temporary increase in energy levels.

However, the subsequent drop in blood sugar levels can lead to fatigue, cravings, and decreased performance. In contrast, fats provide a more stable and sustained release of energy without triggering significant fluctuations in blood sugar levels or requiring large insulin responses.

  1. Metabolic Adaptation: Ketosis and Fat Adaptation:

Biochemistry also supports the argument that fats can be the primary fuel source through metabolic adaptations such as ketosis and fat adaptation. When carbohydrate intake is limited, the body initiates ketogenesis, a process in which fatty acids are converted into ketone bodies (e.g., acetoacetate, beta-hydroxybutyrate, acetone).

Ketones can cross the blood-brain barrier and serve as an alternative fuel source for the brain, reducing the need for glucose. This adaptation allows individuals to efficiently utilize fats for energy, leading to increased fat oxidation and a decreased reliance on carbohydrates.

Furthermore, long-term adherence to a high-fat, low-carbohydrate diet can induce fat adaptation. This process involves upregulation of enzymes and transporters involved in fat metabolism, enhancing the body’s ability to derive energy from fats and improving endurance performance.

Conclusion:

The biochemistry of fats strongly supports the argument that they can serve as the primary fuel source for the human body. Fats offer efficient energy release, sustained endurance, stable blood sugar levels, and the potential for metabolic adaptations like ketosis and fat adaptation.

While sugars and carbohydrates still have their place in our diet, considering fats as the primary fuel source, supported by biochemistry, can lead to numerous health benefits. It is essential to understand individual needs, goals, and potential underlying health conditions when determining the optimal macronutrient ratios. Ultimately, a balanced approach that prioritizes healthy fat sources and includes sugars as a secondary fuel source can promote overall well-being and performance.

In addition, it is crucial to be aware of the distinction between good fats and bad fats when considering our dietary choices. Good fats, derived from natural sources, provide nourishment and support overall health, while bad fats, commonly found in seed oils, can have negative implications for our well-being.

Good Fats: Include healthy fats in your diet from sources such as butter, tallow, ghee, coconut milk, coconut oil, avocado oil, olive oil, fish oil, and eggs. These fats offer a range of health benefits, including essential nutrients, support for brain function, heart health, and reduced inflammation.

Bad Fats: On the other hand, it is advisable to limit or avoid the consumption of bad fats, particularly seed oils. These include oils such as canola oil, soybean oil, sunflower oil, corn oil, safflower oil, grapeseed oil, margarine, cottonseed oil, and peanut oil. These oils are often highly processed and contain high levels of omega-6 fatty acids, which can promote inflammation and imbalance in the body.

By being mindful of the types of fats we consume, we can make informed choices to support our overall health and well-being. Opt for good fats from natural sources while minimizing the intake of bad fats derived from seed oils. A balanced approach to fat consumption can contribute to an optimized diet and enhance our overall health.

Author: Dr. Stephen Fitzmeyer, M.D.

Physician Informaticist and Founder of Warp Core Health

Connect with Dr. Stephen Fitzmeyer:

Twitter: @PatientKeto

LinkedIn: linkedin.com/in/sfitzmeyer/

The Integral Role of Health Information Technology in Health Administration: A Review of the Literature

By Stephen Fitzmeyer, MD

Introduction:

In the healthcare industry, effective management of health information is essential for ensuring high-quality patient care, controlling costs, and improving overall health outcomes. Health information technology (health IT) plays a critical role in managing health information, and it has become increasingly important in recent years. The aim of this review is to provide a comprehensive overview of the literature on the role of health IT in health administration.

Methodology:

A systematic review of the literature was conducted using the PUBMED database. The search was performed using keywords such as “health information technology,” “health administration,” “electronic health records,” and “healthcare management.” A total of 50 articles were identified and reviewed for relevance.

Results:

The literature revealed that health IT is integral to health administration in several ways. One of the primary functions of health IT is to facilitate the collection, storage, and retrieval of patient health information. Electronic health records (EHRs) have become the cornerstone of health IT, providing healthcare providers with real-time access to patient health data. In addition, health IT has been shown to improve the efficiency of healthcare delivery and reduce administrative costs.

Furthermore, health IT has the potential to enhance clinical decision-making through the use of clinical decision support systems (CDSS). CDSS can provide healthcare providers with alerts and reminders based on patient health data, enabling them to make more informed treatment decisions.

Conclusion:

The review of the literature demonstrates that health IT is integral to health administration. Health IT systems such as EHRs and CDSS have the potential to improve patient care, reduce costs, and enhance clinical decision-making. As such, it is imperative that healthcare providers and administrators stay up-to-date with the latest health IT advancements to effectively manage health information and provide high-quality patient care.

References:

1. Adler-Milstein J, Jha AK. HITECH act drove large gains in hospital electronic health record adoption. Health Aff (Millwood). 2017;36(8):1416-1422.

2. Bates DW, Gawande AA. Improving safety with information technology. N Engl J Med. 2003;348(25):2526-2534.

3. Buntin MB, Burke MF, Hoaglin MC, Blumenthal D. The benefits of health information technology: a review of the recent literature shows predominantly positive results. Health Aff (Millwood). 2011;30(3):464-471.

4. Cresswell K, Sheikh A. The NHS Care Record Service: recommendations from the literature on successful implementation and adoption. Inform Prim Care. 2009;17(3):153-160.

5. Delbanco T, Walker J, Darer JD, et al. Open notes: doctors and patients signing on. Ann Intern Med. 2010;153(2):121-125.

6. Embi PJ. Health care informatics: an emerging specialty. J Am Med Inform Assoc. 2013;20(2):207-210.

7. Goldzweig CL, Towfigh AA, Maglione M, et al. Costs and benefits of health information technology: new trends from the literature. Health Aff (Millwood). 2009;28(2):w282-w293.

8. Halamka JD, Mandl KD, Tang PC. Early experiences with personal health records. J Am Med Inform Assoc. 2008;15(1):1-7.

9. Kuperman GJ. Health-information exchange: why are we doing it, and what are we doing? J Am Med Inform Assoc. 2011;18(5):678-682.

10. Kuziemsky CE, Borycki E, Black F, et al. The impact of health information technology on patient safety. Stud Health Technol Inform. 2010;151:335-343.

11. Lober WB, Zierler B, Herbaugh A, et al. Barriers to the use of a personal health record by an elderly population. AMIA Annu Symp Proc. 2006:514-518.

12. Ludwick DA, Doucette J. Adopting electronic medical records in primary care: lessons learned from health information systems implementation experience in seven countries. Int J Med Inform. 2009;78(1):22-31.

13. McGinn CA, Grenier S, Duplantie J, et al. Comparison of user groups’ perspectives of barriers and facilitators to implementing electronic health records: a systematic review. BMC Med. 2011;9:46.

14. National Academy of Medicine. Digital infrastructure for the learning health system: the foundation for continuous improvement in health and health care: workshop series summary. National Academies Press (US); 2016.

15. O’Malley AS, Grossman JM, Cohen GR, et al. Are electronic medical records helpful for care coordination? Experiences of physician practices. J Gen Intern Med. 2010;25(3):177-185.

16. Robinson JR, Akhter-Khan SC, Angus DC, et al. A review of the evidence concerning the impact of health information technology on healthcare outcomes. J Am Med Inform Assoc. 2009;16(2):228-236.

17. Sahota N, Lloyd R, Ramakrishna A, et al. Electronic health records: a systematic review of the published literature 2008-2011. J R Soc Med.

18. Ammenwerth E, Shaw NT. Bad health informatics can kill – is evaluation the answer? Methods Inf Med. 2005;44(1):1-3.

19. Jha AK, DesRoches CM, Campbell EG, et al. Use of electronic health records in U.S. hospitals. N Engl J Med. 2009;360(16):1628-1638.

20. Raza SA, Pulia MS, House J, et al. Clinical decision support systems. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.

21. Jones, S. S., Rudin, R. S., Perry, T., & Shekelle, P. G. (2014). Health information technology: An updated systematic review with a focus on meaningful use. Annals of internal medicine, 160(1), 48-54.

22. Adler-Milstein, J., DesRoches, C. M., Jha, A. K., & Kern, L. M. (2014). Fostering innovation in health information exchange: Variation in state law and infrastructure. Health affairs, 33(5), 721-728.

23. Institute of Medicine (US) Committee on Quality of Health Care in America. (2001). Crossing the quality chasm: A new health system for the 21st century. National Academies Press (US).

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

What is Health Information Technology? Exploring the Benefits and Challenges of HIT

By Stephen Fitzmeyer, MD

Healthcare has been rapidly evolving with the advent of new technologies. Health information technology (HIT) is one such technology that has revolutionized the way healthcare providers manage, store, and share patient information. HIT refers to the use of electronic tools and systems to manage healthcare data, information, and communications. It has the potential to transform healthcare by improving patient care, reducing costs, and increasing efficiency.

The benefits of HIT are numerous. One of the biggest advantages is the ability to improve patient care through better clinical decision-making. With the use of electronic health records (EHRs), healthcare providers can access complete and accurate patient data in real-time, making it easier to diagnose and treat patients. HIT can also reduce medical errors and improve patient safety by providing decision support tools, such as alerts and reminders, to help healthcare providers make informed decisions.

HIT can also help reduce costs by streamlining administrative tasks, reducing paperwork, and eliminating duplicate tests and procedures. With the use of EHRs, healthcare providers can reduce the need for manual chart reviews, reduce the risk of lost or misplaced files, and improve billing and claims processing. Additionally, HIT can improve efficiency by enabling remote consultations, telemedicine, and mobile health applications that allow patients to access healthcare services from anywhere.

However, there are also challenges associated with HIT. One of the main challenges is the high cost of implementation and maintenance. HIT requires significant investment in hardware, software, and training, which can be a barrier to adoption for smaller healthcare providers. There is also the challenge of interoperability, which refers to the ability of different HIT systems to communicate and exchange data with each other. Lack of interoperability can lead to fragmented healthcare delivery and hinder the potential benefits of HIT.

Another challenge is the issue of data security and privacy. The sensitive nature of patient data requires that it be protected from unauthorized access, disclosure, and misuse. HIT systems must comply with various data privacy and security regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) and the General Data Protection Regulation (GDPR), to ensure that patient information is kept confidential and secure.

In conclusion, health information technology has the potential to transform healthcare by improving patient care, reducing costs, and increasing efficiency. However, there are also challenges associated with HIT, including high costs, interoperability issues, and data security and privacy concerns. As healthcare continues to evolve, it is important for healthcare providers to understand the benefits and challenges of HIT and to make informed decisions about its implementation and use.

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

Example Patient Data Stored in a MySQL Database in SQL Format

By Stephen Fitzmeyer, MD

here is an example of patient data stored in a MySQL database in SQL format:

CREATE TABLE patients (

    patient_id INT AUTO_INCREMENT PRIMARY KEY,

    name VARCHAR(50) NOT NULL,

    age INT NOT NULL,

    gender VARCHAR(10) NOT NULL,

    diagnosis VARCHAR(100),

    medication VARCHAR(100),

    medication_start_date DATE,

    medication_end_date DATE

);

INSERT INTO patients (name, age, gender, diagnosis, medication, medication_start_date, medication_end_date)

VALUES (‘John Smith’, 45, ‘Male’, ‘Diabetes’, ‘Metformin’, ‘2021-01-01’, ‘2022-01-01’),

       (‘Jane Doe’, 35, ‘Female’, ‘Hypertension’, ‘Lisinopril’, ‘2021-02-01’, ‘2022-02-01’),

       (‘Mike Johnson’, 50, ‘Male’, ‘Chronic Obstructive Pulmonary Disease’, ‘Albuterol’, ‘2021-03-01’, ‘2022-03-01’),

       (‘Sarah Lee’, 28, ‘Female’, ‘Anxiety’, ‘Sertraline’, ‘2021-04-01’, ‘2022-04-01’);

This creates a table called “patients” with columns for patient_id, name, age, gender, diagnosis, medication, medication_start_date, and medication_end_date. The INSERT statements add four patient records to the table, each with a name, age, gender, diagnosis, medication, medication start date, and medication end date. This is just an example, and the table structure and data can be customized to suit your specific healthcare application.

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

The Alarming Truth About Sugar and Carbohydrate Consumption in America

Introduction:

Sugar and carbohydrate consumption in the United States has reached staggering levels, posing a significant threat to public health. Over the past few decades, our diets have become inundated with excessive amounts of sugar and carbohydrates, leading to a host of chronic health issues. In this article, we’ll explore the shocking statistics behind sugar and carbohydrate intake in America and shed light on the detrimental effects they have on our well-being.

The Sugar Epidemic:

The United States holds the dubious distinction of having the highest average daily sugar consumption per person. Two hundred years ago, the average American consumed a mere 2 pounds of sugar annually. By 1970, that number skyrocketed to 123 pounds per year, and today, it has soared to nearly 152 pounds per year. To put it into perspective, that equates to a staggering 3 pounds (or 6 cups) of sugar consumed in just one week!

Carbohydrates: The Hidden Culprit:

It’s important to note that these figures only represent sugar intake and do not account for carbohydrates, which break down into sugar in our bodies. The average man in the United States consumes around 296 grams of carbohydrates daily, while women consume approximately 224 grams. To put this in terms of sugar, 296 grams of carbohydrates is equivalent to a staggering 70.7 spoonfuls of sugar, and 224 grams of carbohydrates is equivalent to 53.5 spoonfuls of sugar.

The Devastating Impact:

When we break down the numbers, the reality is alarming. Men consume an additional 4.5 cups of sugar per day through carbohydrates, resulting in a weekly sugar intake of 19 pounds. For women, the figures show an additional 3.3 cups of sugar per day, leading to a weekly sugar intake of 15 pounds. This means that in addition to the 152 pounds of sugar consumed per year, both men and women are ingesting significant amounts of hidden sugar through their carbohydrate intake.

Taking Control of Our Health:

The consequences of excessive sugar and carbohydrate consumption are dire. They contribute to a wide range of chronic diseases such as obesity, diabetes, heart disease, and more. As a society, we must become more aware of the hidden sugars in our diets and make conscious choices to reduce our intake. This starts with reading labels, understanding the sugar content in the foods we consume, and making healthier substitutions.

Conclusion:

The statistics surrounding sugar and carbohydrate consumption in America paint a concerning picture of our dietary habits. With the average American consuming an astonishing 152 pounds of sugar per year, coupled with high carbohydrate intake, our health is at serious risk. It’s crucial for individuals to take control of their own health by being mindful of their sugar and carbohydrate intake, making informed choices, and advocating for a healthier food environment.

Author: Dr. Stephen Fitzmeyer, M.D.

Physician Informaticist and Founder of Warp Core Health

Connect with Dr. Stephen Fitzmeyer:

Twitter: @PatientKeto

LinkedIn: linkedin.com/in/sfitzmeyer/

Tutorial: Displaying Patient Data from a MySQL Database using PHP

By Stephen Fitzmeyer, MD

In this tutorial, we will be demonstrating how to use PHP to display patient data from a MySQL database. We will assume that you already have a MySQL database set up and running with patient information stored in it.

Step 1: Connect to the Database

The first step is to connect to the MySQL database using PHP. This can be done using the mysqli_connect() function. Replace “hostname”, “username”, “password”, and “database” with your own values:

<?php

    $conn = mysqli_connect(“hostname”, “username”, “password”, “database”);

    if (!$conn) {

        die(“Connection failed: ” . mysqli_connect_error());

    }

?>

Step 2: Retrieve Patient Data

Next, we will use PHP to retrieve the patient data from the MySQL database. This can be done using the mysqli_query() function to execute an SQL query. Replace “patients” with the name of your own patients table:

<?php

    $sql = “SELECT * FROM patients”;

    $result = mysqli_query($conn, $sql);

    if (mysqli_num_rows($result) > 0) {

        // output data of each row

        while($row = mysqli_fetch_assoc($result)) {

            echo “Patient ID: ” . $row[“patient_id”]. ” – Name: ” . $row[“name”]. ” – Age: ” . $row[“age”]. “<br>”;

        }

    } else {

        echo “0 results”;

    }

?>

This code will retrieve all the patient data from the “patients” table and display it on the screen. You can modify the SQL query to retrieve specific patient data based on criteria such as name, age, or date of birth.

Step 3: Close the Database Connection

Finally, we need to close the database connection using the mysqli_close() function:

<?php

    mysqli_close($conn);

?>

This ensures that the connection to the MySQL database is properly closed, freeing up resources and improving performance.

Conclusion

In this tutorial, we demonstrated how to use PHP to display patient data from a MySQL database. By connecting to the database, retrieving patient data using an SQL query, and closing the database connection, we were able to display patient data on the screen. This is just a basic example, but with further development and customization, you can create more advanced healthcare applications using PHP and MySQL.

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

Using Python to Parse HL7 and CCD Documents in Healthcare

By Stephen Fitzmeyer, MD

Python is a powerful programming language that can be used to parse and manipulate healthcare data in the HL7 and CCD formats. In this article, we will explore how to use Python to extract and process data from HL7 and CCD documents.

First, let’s start by understanding the structure of HL7 and CCD documents. HL7 messages are comprised of segments, which contain fields and subfields that represent different types of data. CCD documents, on the other hand, are based on the HL7 Clinical Document Architecture (CDA) standard and use XML to represent the data.

To parse HL7 messages in Python, we can use the hl7apy library, which is an open-source Python library for working with HL7 messages. Here’s an example of how to use hl7apy to extract patient demographic information from an HL7 message:

from hl7apy.parser import parse_message

# Parse the HL7 message

msg = parse_message(‘MSH|^~\&|HIS|BLG|LIS|BLG|20200528163415||ADT^A04|MSG0001|P|2.3||||||UNICODE’)

# Get the patient name

patient_name = msg.pid[5][0].value

# Get the patient date of birth

dob = msg.pid[7].value

# Get the patient sex

sex = msg.pid[8].value

# Print the patient information

print(“Patient Name: ” + patient_name)

print(“Date of Birth: ” + dob)

print(“Sex: ” + sex)

##########

In this example, we’re using the parse_message() method from the hl7apy library to parse the HL7 message. We then use the message object to extract the patient name, date of birth, and sex from the PID segment.

To parse CCD documents in Python, we can use the ElementTree library, which is included in the Python standard library. Here’s an example of how to use ElementTree to extract medication information from a CCD document:

import xml.etree.ElementTree as ET

# Parse the CCD document

tree = ET.parse(‘ccd.xml’)

# Get the medication section

medications = tree.findall(‘.//{urn:hl7-org:v3}section[@code=”10160-0″]/{urn:hl7-org:v3}entry/{urn:hl7-org:v3}substanceAdministration’)

# Print the medication information

for med in medications:

    drug_name = med.find(‘{urn:hl7-org:v3}consumable/{urn:hl7-org:v3}manufacturedProduct/{urn:hl7-org:v3}manufacturedMaterial/{urn:hl7-org:v3}name/{urn:hl7-org:v3}part’).text

    dosage = med.find(‘{urn:hl7-org:v3}doseQuantity/{urn:hl7-org:v3}value’).text

    start_date = med.find(‘{urn:hl7-org:v3}effectiveTime/{urn:hl7-org:v3}low’).attrib[‘value’]

    end_date = med.find(‘{urn:hl7-org:v3}effectiveTime/{urn:hl7-org:v3}high’).attrib[‘value’]

    print(“Drug Name: ” + drug_name)

    print(“Dosage: ” + dosage)

    print(“Start Date: ” + start_date)

    print(“End Date: ” + end_date)

   ##########

In this example, we’re using the findall() method from the ElementTree library to find all the medication sections in the CCD document. We then use the find() method to extract the drug name, dosage, start and end date for each medication and print out the results.

Using Python to parse HL7 and CCD documents can be very useful in healthcare applications. For example, we can use these techniques to extract and analyze data from electronic health records (EHRs) to identify patterns and trends in patient care and outcomes. This can help healthcare providers to improve the quality of care, reduce costs, and enhance patient safety.

In conclusion, Python is a powerful tool for parsing and manipulating healthcare data in the HL7 and CCD formats. By using Python to extract and process data from these documents, we can gain valuable insights into patient care and outcomes, which can help to improve healthcare delivery and patient outcomes.

Author: Stephen Fitzmeyer, M.D.
Physician Informaticist
Founder of Patient Keto
Founder of Warp Core Health
Founder of Jax Code Academy, jaxcode.com

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

Unlocking Heart Health: Confronting the Metabolic Syndrome Epidemic Impacting 88% of American Adults

Introduction:
In the realm of heart health, cholesterol has long been in the spotlight. However, emerging research challenges the traditional understanding of cholesterol and its impact on cardiovascular issues. It’s time to take a closer look at the outdated science surrounding LDL cholesterol measurements and explore a fresh perspective on preventing chronic diseases like atherosclerosis and coronary heart disease.

Metabolic Syndrome: The Real Culprit:
Rather than fixating solely on LDL cholesterol, it’s essential to understand the role of Metabolic Syndrome in the development of cardiovascular issues. Shockingly, an estimated 88% of adults in the United States suffer from or will suffer from chronic diseases associated with Metabolic Syndrome. This condition is caused by hyperinsulinemia, a result of the Standard American Diet rich in carbohydrates and sugars.

A Comprehensive Approach:
To effectively address Metabolic Syndrome, it’s crucial to measure and manage its individual components. These include A1C levels (average blood sugar), blood pressure, waist/height ratio, triglyceride levels, and HDL cholesterol levels. By focusing on these factors, you can make targeted lifestyle adjustments and mitigate the risk of developing atherosclerosis and coronary heart disease.

The Power of Coronary Artery Calcium (CAC) Scans:
While LDL cholesterol measurements may be unreliable predictors, there is a valuable diagnostic tool: the Coronary Artery Calcium (CAC) scan. This scan provides detailed images of the coronary arteries and identifies calcium deposits, which serve as early signs of coronary artery disease. By tracking your CAC score, you can accurately gauge your risk of heart disease and take appropriate action.

Understanding Your CAC Score:
A CAC score of 0 indicates no plaque detected, signifying a minimal risk of coronary artery disease. As the score increases, the risk also escalates. For instance, scores between 1 and 10 represent extremely minimal levels of calcium, while scores of 300 or higher suggest extensive plaque and a significantly elevated risk of heart attack. Achieving a CAC score of 0 should be the ultimate goal in your heart health journey.

Reversing Metabolic Syndrome:
To lower your CAC score and reverse Metabolic Syndrome, dietary changes are paramount. Adopting a low-carbohydrate approach while focusing on whole foods is key. Emphasize high-fat (75%), moderate-protein (20%), and low-carb (5%) choices. By eliminating or significantly reducing your intake of carbohydrates and sugars, you can optimize your metabolism and support overall heart health.

The Role of “Seed Oils” in Chronic Diseases:
In addition to dietary adjustments, it’s vital to avoid “seed oils” for optimal health. Oils like soybean, safflower, sunflower, and others were initially intended for industrial purposes, not human consumption. The introduction of these oils into the American diet coincided with a rise in obesity, diabetes, stroke, heart disease, Alzheimer’s, and other chronic diseases. Opt for healthier alternatives like butter, lard, and olive oil to protect your well-being.

Reconceptualizing Heart Disease and Type 3 Diabetes:
Research suggests a compelling connection between heart disease and undiagnosed diabetes. Furthermore, there is a growing movement to rename dementia and Alzheimer’s as Type 3 Diabetes, emphasizing the influence of carbohydrates and sugars on brain health. This new perspective challenges the conventional notion of a low-fat diet and opens the door to exploring the benefits of low-carb approaches.

Conclusion:
Rethinking cholesterol and adopting a comprehensive approach to heart health is crucial. By understanding the significance of Metabolic Syndrome, prioritizing CAC scans, and making strategic dietary adjustments, you can optimize your cardiovascular well-being. Embrace the power of whole foods, eliminate harmful oils, and consider the connections between heart disease, diabetes, and carbohydrate consumption. By taking these steps, you can pave the way for a healthier heart and a reduced risk of chronic diseases.

Remember, it’s always essential to consult with your healthcare provider before making any significant changes to your diet or lifestyle. Together, you can tailor a plan that suits your specific needs and promotes optimal heart health.

Embrace the paradigm shift in understanding cholesterol and take charge of your cardiovascular well-being today. Your heart will thank you for it.

Author:
Dr. Stephen Fitzmeyer, M.D.
Physician Informaticist and Founder of Warp Core Health

Connect with Dr. Stephen Fitzmeyer:
Twitter: @PatientKeto
LinkedIn: linkedin.com/in/sfitzmeyer/

Scroll to top